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Improved numerical technique to calculate statistical Coulomb blurring
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This paper studies the effects of Coulomb blurring in charged-particle optics using a method that
combines Monte Carlo techniques with analytical calculations. A correction factor for the analytical
theory of Jansen and Kruit is obtained. This approach strongly enhances the accuracy of the method,
while maintaining the speed of calculation. The method gives good agreement with Monte Carlo
simulations. The effects of aperturing are also included.2@3 American Institute of Physics.
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I. INTRODUCTION results into the analytical approach. We also include the ef-
fects of aperturing. We end with the conclusions.

The calculation of statistical Coulomb interactions in
charged1p$1rticle optical systems has been a long-standing
proble_m. One can roughly distinguish tw_o app_roaches.“_ STATISTICAL COULOMB INTERACTIONS
analytical calculations and Monte Carlo simulati§nin
Monte Carlo simulations, one takes a sample of particles \when dealing with Coulomb forces in charged-particle
with random initial Conditionialthough SatiSfying the beam OptiCS, one often divides the interaction into two compo-
characteristics The trajectories of these particles are thenpents: the longitudinal one, which affects the particle along
numerically evaluated as they go through the column. Althe optical axis, causes a change in the kinetic energy leading
though straightforward, the calculations are often time conto chromatic effectthis is usually known as the Boersch
suming and are usually not performed in the actual desigeffect), and the radial component of the particle’s position,
process. Analytical approaches are much faster, but they usgerpendicular to the optical axis, which gives rise to trajec-
ally rely on a number of assumptions needed to obtain angory displacement%.In this article we focus on the latter
lytical results in certain limits. One of the most extensivesince the former can often be effectively included in the in-
theories on Coulomb blurring is that of JandeHere the trinsic energy spread of the source. For the radial component
values for the Coulomb interaction are based on analyticabf the particle position, we are interesteddrn/dz resulting
results obtained for the limitsea—0 andoe, wherer peamis  from the effective Coulomb forcE™"" acting on the particle.
the beam radius. Values for the Coulomb interaction for in-The change in is determined by Newton’s law, given by
termediate e,y Values are obtained via interpolation. It was 2 2 12
already notedl® that especially in the intermediate regime "= d_r: ﬂ EZ i
deviations exists. One of the reasons for these deviations is dz\dz/ dt*  mo}
the fact that the Coulomb interactions are calculated for O”WhereFf'S' is the force due to the lens fields, which we take

axis trajectories, whereas the statistical Coulomb forceere 1o be electrostatic. Generally, the stochastic Coulomb
could be different off axis. With the advances in chargedyces are much smaller thafe>, and we therefore treat

particle optics and the use of brighter sources, Coulomb blurfem as a perturbation. The unperturbed rays can be found
ring becomes increasingly a limiting aberration. For eX-from the usual ray equatioh

ample, for standard Ga liquid-metal-ion-source colurhns, ) .

Coulomb blurring is estimated to be the largest or second- v V—r’+ 2 0 )
largest aberration over the current range from 1 pA j@oAl 2V v

For many applications the column is run in the ir‘term‘Edi""t‘?/vhereV is the axis potential. The general lowest-order tra-

reg".“e' where t_he Iarge§t deviations are expected. In. order 8ctory can be written as a sum of two independent solutions
obtain more reliable estimates of the Coulomb blurring, we¢ ray equation,

show here how numerical Monte Carlo like results can be

(F?'S'-i- FPIur), (1)

incorporated in an analytical calculation. This approach r(z)=aX(2)+BY(2), (©)]
stropgly enhances the accuracy of the method, while mainyhere the boundary conditions fot and Y are given by
taining the speed of calculation. X(24)=0, X'(z9)=1 and¥(zg) =1, Y'(25) =0, with z, the

The paper is organized as follows. We start with a briefyqsition of the virtual source. Thus, the physical interpreta-
e_xplanatlon of the analytical _calculatlon of Coulomb bI_ur- tions of @ and B are the half-beam opening angle at the
ring. We then show how to incorporate Monte Carlo like ¢ rce and the virtual source size, respectively.

The effect of statistical Coulomb interactions can be in-
dElectronic mail:  veenendaal@physics.niu.edu cluded by the method of variation of parameters. The effect
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of the Coulomb interactions in a thin beam slice at a certain

position z can be taken into account by requiring that the
trajectory is continuous,

da®(2)X(z)+dB""(2)Y(2)=0, (4)

and that the change in trajectory is determined by the sto-

chastic force in the radial direction working on the patrticle
Fo=FoY (mo?),

da®™(2)X"(2)+dB"(2)Y'(2) =T }u(2). (5

From this set of equations, one easily obtains
blur( ) — _ Mo 2)X(2)
4B D=~ T N D =XV @) ©
=—rpu(2)X(2)VV(2)/V,. (7)

The total ray is then given by

r(z2)=[a+a”(2)]1X(2)+[ B+ B"(2)]Y(2), 8
with the coefficients

g2 | azapa), ©

and likewise fora®“". The contribution of Coulomb blurring
to the total spot size is now given y''=M g7z,
wherez;,. is the focal point andvl =Y(z,.) the magnifica-
tion.
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FIG. 1. Schematic presentation of the beam in the pencil and Holtsmark
regimes.\ is the linear particle density.

e’ d,

Fr=47780 d3
whered is the average particle distance athdthe average
distance in the radial direction. In the limite,,— 0 (often

called the pencil regime; see Fig),1d,—Tpeam and d
—\"L Forriy, we find then

(12

3/2 13
m I Ibeam

"o __
Msop=Cp 72 —\/572 -

g2 (13

In the opposite limitrpe.—© (the Holtsmark regime;
see Fig. 1, we haved=v2d,=v2d,= (7T feard )2, giv-
ing

1/3 | 2/3

4] 4/3*
rbeamv

"o m
lrson=Ch——

(14
€0

The idea behind the analytical calculation of stochastidExact calculatiorfs show that the constants app=0.435

Coulomb interactions is finding a good estimate Fj"".

andcy=0.127. Interpolation between the two different ge-

Since we are dealing with statistical quantities there is @metries is done according®to

probability distribution function of forces. The value that we
shall use here is the medidfis of the force distribution
function, where theag value for a probability functiop(a)

in two dimensions is defined by

al

)

with a= \/axz+ ayz. Thus theag, value contains 50% of the
probability distribution function. We prefer to use tRéLs
value instead of the full width at half maximu@WHM) of

the distribution function. The reason for this is that in certain
limits the probability function becomes very narrow and the
FWHM then gives a poor estimate of the forces working on
the particle.

The next step is to derive thé, ,,, values. Since spee

1
2rada= -,

50
p(a) 5

(10

d

of calculation is of importance, one does not like to calculate®

probability distribution functions too often. Jan8erses for
his rg 1, Values an interpolation between exact results tha
can be obtained in the limits,e;,—0 ande«. The relevant
parameters for the distribution function of forces agg.
and the linear particle density

|
A= e Jm/2e3v I,
z

(11)

1 1 1
=t o (15
F'son  Tson  Isop
In a similar way, one can define the analytical value for the
force asFsga=mMu2rg, -

Although this interpolative scheme usually gives the
right order of magnitude, it is quite often not accurate
enough for design purposes. The major discrepancies occur
in the intermediate region whemd,, and ri, are of the
same order of magnitude. A different approach to calculating
Coulomb blurring is the use of Monte Carlo simulation. Here
one takes a random bunch of particles that satisfy the desired
beam characteristics and traces them through the column.
This gives better results than the analytical method described
above, but Monte Carlo calculations are generally time con-
uming and lack the ease of use of the analytical approach.
The latter method can, however, be significantly improved
py a better estimate of the, value. In the remainder of the
paper, we shall describe how this quantitity can be evaluated
numerically and be incorporated as a correction factor into
the analytical method.

1. NUMERICAL CALCULATION OF rg,

To obtain the value of,, one needs to determine the

where\ ~! gives the average distance between the particledistribution functions of £, as a function of the distance to

in the z direction. the optical axig. This can be done by taking a cylinder with
We now want to obtain an estimate of the force in thebeam radius ,.omand of sufficient length, i.e., long enough

radial direction, that finite size effects can be neglecisée Fig. 2 A probe
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FIG. 2. Cylindrical beam used in the calculations of the force probability 5 ——J/k\‘
QU

distribution functions. The cylinder with radiuge,nis filled randomly with

particles corresponding to a certain linear particle densitfhe forces are ____,L
then calculated for test particles that are placed in the middle of the cylinder

at a distance from the symmetry axis. &
particle is then positioned in the middle of the cylinder at a ———/\“~
distancer from the axis. The cylinder is then filled with T~ ]

particles of massn corresponding to certain beam character- T=Theam TR
istics, i.e.,\ and rye,m The stochastic force on the probe -0.3 0.0 0.3
particle F$°°"is then calculated. Note that this force can be Fr““h/ﬁ'w 4

split into a longitudinal componerfEf ™= F5°"s"} and a
perpendicular Componerﬂi‘“h. This procedure is repeated F_IG. 4. Calculated probability distribution of the fqrce as a function of
until sufficient statistics has been obtained for the probabilityiStnce o the symmetry axis under beam conditibngay=0.11. The
. stoch . S actual calculations have been done for a cylinder with a radjjdg,
function of F;™". The probability distribution become al- =0.1um filled with Ga ions using a current =5 nA and a beam voltage
most independent of the number of particles for more tharf 30 kv.
approximately 50—-100 particlegCalculations have been
done with many more particlgsThis shows that the statis-
tical Coulomb force is mainly determined by interactions effects when moving away from the center toward the edge
with particles that are close to the test particles. of the beam. First, we see that the probability function shifts
Figure 3 shows typical probability distribution functions due to the space charge effect. Secondly, the probability
in the Holtsmark regime for the forces in the radial direction.function becomes asymmetric. Figure 4 gives the probability
We have used herk 1=46 um. For Ga ions, this corre- distribution function of the radial forces in the pencil regime.
sponds toV=301%(nm) kV, for example, 30 kV and 1 nA. Avalue forirye,,=0.11 has been used. At the center of the
Calculations are done fokrpe,,=21.7. We see two clear beam the probability distribution function is a very narrow
peak with long tails. For particles at the edge of the beam the
distribution function has become strongly asymmetric. Note

oL T T the absence of space charge effects.
S T e S Vi . . . . . .

T _.//i‘\_ [~ | Since we are interested in the increase in spot size due to
| o~ ] [~ Coulomb blurring, we have to separate the effects from the
—-——/N ] space charge effects. For a homogeneous charge distribution
__/E/—\\_* T~ ] the force as a result of space charge is
[~ 1 T ]

— [~ ] len

S ] - PPty =5 =N, (16)

'2 ___’:/\* /\ g £o

. 2

% ————N % ‘E; wheren is the charge density. Due to the proportionality to
ﬂ [~ < the effect ofF;*““is that of an ideal lens, leading to a defo-
[ T~ ] /\\\ﬁ cusing. Since this does not directly lead to an increase in spot
___:_A //”\x\ size we want to remove thedependence, i.e., determine the
———EA/\ k constaniN,, for a stochastic distribution. For a particular dis-

‘ S o k tancer from the optical axis we obtain
1
T=Theam t | N L . 1 t
-2 0 2 4 0 2 Ne(r)= —Frsgtr), 17)
stoch blur

F°%Fg, F /FsoA where we use here the one-dimensioag], given by

FIG. 3. Probability distributions of the Coulomb force on a particle at dis- asy 1

tancer from the center of the beam, on the left for the radial component, on f p(a)da= =, (18

the right for the absolute value after removal of the space charge effects. —o 2

Calculations correspond tor e,,=21.7. The actual calculations have been . . L .
done for a beam with radius,.,,= 1000xm, filed with Ga ions with beam  Wherep(a) glveg_the probability of finding quap_tna. Thus
characteristic&/ =30 kV andl =1 nA. 50% of theF;°"is smaller and 50% of thE;"**"is greater
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FIG. 5. The correction valu€(r,eam @) as a function ohr e,y Curves are
given for different aperture values

thanF S5y
N, for all r. We use here a weighted average of Mr):

1 albeam
Ne(a)szo Ne(r)27rrdr. (19)

(

We take into account here the effect of aperturing, by inte- J J J T

grating not over the entire beam but only upre arpeam

with ae[0,1], i.e., we calculate the effects on only the par-

ticles that actually contribute to the probe current.
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+27°)%2 is a renormalization by 2. However, the forces
Fsop and Fgoy already scale this way. Therefore, distribu-
tions with equalr.,,Should have the same correction fac-
tor. The correction factors take into account the effects of a
finite size of the beam and the different configurations of the
particles with respect to each other off axis compared to on
axis. Since the correction factor does not dependnph V,
and rpeam but only oniry.,, the calculational effort is
strongly reduced. The functioB(Areama) can be simply
tabulated and intermediate values can be interpolated.

Results forC(Arpeam@) are shown in Figs. 5 and 6. For
C(Arpeam@)—1 the analytical theory is valid. Note that
substantial deviations are found in the intermediate region,
where the interparticle distanckis comparable to the beam
radiusr peam: Solvingrig,=reee we find that the intermedi-
ate regime occurs for

|
Mbeamze—rbeam% 0.417, (23)
Uz

whereas the minimum is found around.,,~=1. The cor-
rection is less foa—0, i.e., for particles close to the optical
axis. Including particles at the edge of the beam in the probe

r). Since there is one focus, we can use only on€orming current &—1) increases the deviations from the

theory of Jansefi.Figure 6 shows the dependence on aper-
turing. In the Holtsmark regime, particles at the edge of the

[ 0.022 ]
100 Q02 TR

Now, we define the Coulomb blurring force as the total
stochastic force minus the space charge contribution, i.e.,

Fblur( r ) — Fstocr‘( r ) _ Fspac? r )
=[FOM Ng(a)r]p + F . (20)

The right side of Fig. 3 gives the probability function
p(FPUY, whereFPY=|FPU| | usingNs(1). Weclearly see a
narrowing of the probability function for larger which in-
dicates that the Coulomb blurring is less at the edge of the
beam. From the probability function for a particular
<arpeam We can derive th&2'(r,a). The average s, .,

is then given by

r F2'(r,a)
& 27(arpeam €V’
(21

This gives a correction factor to the original analyticgi,
from Eq. (15),

" )\ - arbeamd 2
I'50,blul s beamy @) = . r

r go( AT beam» a)

0 (22
I'50a

C(AIpeam@) =

Note that, apart from the aperture constaaf
C(Arpeam@) depends only om\rye,m This can be under-
stood as follows. Changing the valuesrgf,,and\ effec-
tively corresponds to a renormalization of th@ndz axes.
Whenr andz are both scaled by a factaes, the only thing
that should happen to the radial Coulomb fofee=r/(r?

COATyeums®)

C(NTpeams®)

0.75

et OO
[=]3)]
(=T

0.75

0.50

0.11

0 0.2
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' T 1 1T T 5 T 1 erating lens at 10 mm\{; =55 kV) and a decelerating lens at

] ] 300 mm {/,=10 kV). The current is 1 nA and the system is
1ook n at its optimum magnification oM =0.36. From Fig. 7, we
see that, without correction, the analytical calculation se-
- . verely overestimates the Coulomb blurring. With correction,
very good agreement is found between the analytical results

Analytical -1 and the Monte Carlo simulatior3.
%c - o Another aspect that differs is that aperturing can reduce
ey * < X the Coulomb blurring in the Holtsmark regime. This is not
50f- n what one would normally expect sineé,,~1’, wherel’
i ==-- Analytical | =1/mr.mis the current density, which does not change
vith correction when passing through an aperture. The change”is a
i R 7 direct result of the different” values for off-axis trajecto-

Monte Carlo ries, an effect not taken into account in the theory of Jafisen.

0 This can be clearly seen in Fig. 6. In the Holtsmark regime,
| I PR BT RN N P | i i
0 50100 150 200 250 300 i.e., Nrpeans>1, the correction valueC()\rbean). decrgages
when the aperture parametarapproaches unity. This is a

z [mm] result of the narrower probability distribution function at the
FIG. 7. Comparison betweef2:" obtained using Monte Carlo, analytical edge_ of the beam. Therefore, after aperturing, the probe
(theory of Jansenand corrected analytical calculations. forming electrons are closer to the edge of the beam and thus
the Coulomb blurring is smaller.

beam have a narrower probability function than particles iny. CONCLUSIONS
the center of the beam. A physical explanation for this is that

at the edge of the beam there are mainly statistical interac- W& have shown that improved estimates of Coulomb
tions in one direction, thereby narrowing the probability dis-P!Urring can be obtained by using a combination of numeri-

tribution. In addition to that the distribution also becomesC@l and analytical techniques. The theory is based on the

asymmetrigsee Fig. 3 In the pencil regime the distribution numerical evaluation of probability distribution functions
becomes wider when—r e, In this regime, the interac- whose widths are used in the analytical evaluation of the

tions are mainly in the longitudinal direction. Forces in the Coulomb  blurring. This leads to a correction factor
radial direction are determined by the andla.. For a par- C(Abeam @) t0 the theory of JansehiNote that this depends

ticle on the axis the maximun, is equal tor peam However,  ONY ONATpear, This has the great advantage that the correc-
for a particle at the edge of the beam, the maximgjncan 10N factor can be used as a simple interpolative function and
be twice as largésee Fig. 1 This results in largeF, . does not need to be reca]culated for every changé, of m,
Figure 7 shows a comparison of Monte Carlo simula-Of "beam We have also included the effects of aperturing.
tions with analytical calculations with and without correc- 11iS approach removes some of the deficiencies of the theory
tion. The Monte Carlo calculations were done using a fast®f Janserf, especially in the intermediate regime. These re-

tree algorithm for calculating the Coulomb interactibrend ~ Sult from inaccuracies in the interpolative scheme and the
a fifth-order Runge-Kutta integration method with variable '€Striction to trajectories on the optical axis. We find good
step sizé In the Monte Carlo method the difference from 29reement with Monte Carlo simulations.

the unperturbed trajectoriesAs;(z). However, this quantity

is not very useful in estimating what the final spot size will 1H. Boersch, z. Phys139, 115(1954).

be. More information can be obtained by separating the’K. H. Loeffler, Z. Angew. Phys27, 145(1969.
value Of,B' Wheren=x y by 3J. M. J. van Leeuwen and G. H. Jansen, OpBkuttgarj 65, 179(1983.
in Y

4G. H. Jansen, Adv. Electron. Electron Phys., Sugf).1 (1990.

/ _ ’ S5P. Kruit and G. H. Jansemjandbook of Charged-Particle Opti¢€RC,
Bistoc 7)=— An,(Z)X(Z) A 7](2),X (2) . (24) New York, 1997, 9 ptia
K Y'(2)X(2)—-Y(2)X'(2) 5H. Rose and R. Spehr, Optituttgarj 57, 339(1980; A. Weidenhausen,

. . . . S toch R. Spehr, and H. Roséid. 69, 126 (1985.
ThIS gives a two-dimensional distribution (ﬁf : F_rom M. M. Mkrtchyan, J. A. Liddle, S. D. Berger, L. R. Harriott, J. M. Gibson,
this, we have to remove the space charge effects in a wayand A. M. Schwartz, J. Appl. Phy38, 6888(1995.

Very Sim”ar to What was done fd'l_‘gg" in Eqs (17)_(20) 5T. R. Groves, J. Vac. Sci. Techndl9, 110(1981); 19, 1106(1981.

RN 10 (18
Finally, we can obtain th@yy value, which should be com- fig%'é P. W. H. de Jager, and P. Kiuit, Microelectron. BAg/42, 249
blur :

pared with theBs, obtained analytically. The spot size is 10p Grivet,Electron Optics(Oxford University Press, Oxford, 1965

given by d2i'=M BBV (z..), Whereds, is the spot size into  *J. Barnes and P. Hut, Natufeondon 324, 446 (1986.
which 50% of all the particles fall. 2See, e.g., W. H. Press, S. A. Teukolsky, W. T. Vetterling, and ByWR.

merical Recipes in FortraiCambridge University Press, Cambridge, En-
As an example, we show here the results for a Ga gland 1985'0 e g y g

focused-ion-beam system with a column voltage of 30 kV:3The small wiggles ingYC are a result of the fact that in that region
and an extraction voltage of 12 kV. The system has an accel-Y'(2)X(2) - Y(2)X'(2) is very small ang3¥- is difficult to determine.
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